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In the calculation of electron-atom cross sections it is often quite useful to obtain 
wave functions for the scattered particles which are orthogonal to the wave functions 
of the electrons bound in the atom. This constraint, although it may neglect certain 
couplings, provides a considerable simplification in obtaining certain transition matrix 
elements. A straightforward technique for enforcing this orthogonality condition 
is to include Lagrange multipliers in the differential equation. 

It has been found that depending on the values of the Lagrange multipliers there may 
be zero, one, or two solutions. However, the solution which yields orthogonality is 
unique. Non-iterative schemes for solutions are discussed and applied to electron- 
hydrogen atom scattering. 

I. INTR~IXJOTION 

In many applications of scattering theory to atomic ([l]-[3]) and nuclear pro- 
cesses the behavior of the projectile particle is described by an uncoupled, linearized 
version of the Hartree-Fock formalism. The wave function of the target particle 
is assumed to be known and a partial wave expansion of the projectile wave func- 
tion leads to second order, integro-differential equations for the radial wave func- 
tions. The equations are linear and are often assumed for convenience to be 
uncoupled. 

The radial equations may also contain terms which arise from the requirement 
that the projectile wave function be orthogonal to the target wave function. For 
some orbitals this condition is satisfied automatically by symmetry requirements 
(e.g. angular momentum); for others this constraint is imposed through the use of 
Lagrange multipliers. It is largely with these orthogonalizing terms that the present 
paper is concerned. It will be shown for fairly general conditions that the number of 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 

259 



260 MJOLSNESS AND RUPPEL 

physically acceptable solutions to the radial equations depends on the values of the 
Lagrange multipliers, there being either two solutions, one solution or no solutions 
for each set of values of the multipliers. It will also be shown that there is precisely 
one solution corresponding to neglecting the requirement of orthogonalization 
(setting all multipliers equal to zero) and that there is precisely one solution 
corresponding to fully orthogonalized wave functions. It is this last solution that is 
usually sought for in physical applications. 

More specifically, attention is restricted to cases in which the target may be 
assumed to be in some definite state (usually the ground state) and to be described 
by one particle Hartree-Fock orbitals containing single variable radial wave 
functions. Then the radial equations for the projectile particle take the form 

d2 
[- dr2 + 

v + k2 - V(r)] y(r) - lrn dr’K(r, r’) y(r’) = i h,NPk(r), (1) 
0 k=l 

where the Ith radial wave function ul(r) is related to y(r) by 

d-> = ty(r). (2) 

the potential term V(r) describes direct interactions with the orbitals of the target 
particle and may include polarization (optical potential) effects, and the kernel 
K(r, r’) arises from exchange interactions with the target orbitals. The radial 
functions Pk(r) (k = l,..., n) are the radial part of those target orbitals which are 
not orthogonal to the Ith partial wave by virtue of the angular or spin parts of the 
orbitals. The Lagrange multipliers, A, , insure that the solutions of Eq. (1) satisfy 
the condition 

s m dry(r) Pk(r) = 0 for k = 1, 2 ,..., n. 
0 

However, for many states the A, are not needed as the orthogonality is imposed by 
the spin or orbital angular momenta. 

It is further assumed that the quantities appearing in Eq. (1) are sufficiently 
regular that the standard asymptotic forms of potential scattering theory [4], 

and 

.dr> g N sin (kr - g + 8) 

may be imposed here on y(r). The normalization constant N is introduced into the 
orthogonalizing terms of Eq. (1) in order to simplify the analysis of this equation 
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by having Eq. (1) formally homogeneous in v(r). In this way values of the multi- 
pliers h, may be considered independently of the normalization of the wave 
function. It is also assumed for convenience that the radial functions Pk(r) are 
normalized to unity. Attention is restricted to kernels K(r, r’) which may be repre- 
sented in the form 

K(r, r’) = 5 q+(r) $!Ji-(r’) 
i=l 

for r < r’ 

where the q&r) and &.(r) can be any regular functions. The important point is 
that the kernels K(r, r’) be made up of products of functions of r and r’. This 
represents a genuine restriction on the class of processes to be considered, but such 
kernels arise very naturally in the Hartree-Fock theory of electron-atom scattering 
and are also often used for convenience in nuclear problems. This restriction 
greatly facilitates the analysis of the properties of Eq. (1). Finally, it is assumed that 
certain sets of linear equations which have integrals of solutions of reduced equa- 
tions as coefficients are nonsingular. 

It is shown in Section II that under these restrictions the totality of values of the 
parameters hj , which may be regarded as an Euclidean n-space specified by the 
vector A, is divided into four regions RI , Rz , R3 , and R, such that in RI Eq. (1) 
has one physically acceptable solution, in Rz the equation has two solutions, while 
in R3 and R, the equation has no solutions. These regions have a simple geometric 
structure, being defined by hyperellipsoids and hyperplanes in the n-space. The 
origin of the n-space h = 0, which corresponds to neglecting all requirements of 
orthogonality, always lies in R, , where the equation is uniquely soluble. The value 
of A corresponding to a fully orthogonalized solution always lies in either RI or 
R, . That is, there is always a value of A for which a solution to Eq. (1) exists which 
is physically acceptable and which is orthogonal to all the orbitals appearing in 
the equation. If, however, the functions appearing in the equation are such that the 
value of h leading to orthogonality lies in R, , then there will be another physically 
acceptable but non-orthogonal solution to the equation at the same value of A. 
These results are the principal content of the paper. 

The above results are concerned, of course, with the basic structure of equations 
used to describe scattering processes in physical systems. But they also have 
implications for the numerical techniques used to solve the equations. Some of 
these implications are explored in Section III, where electron-atom, principally 
electron-hydrogen, calculations are discussed. It is shown that for singlet s-wave 
scattering iteration techniques for solution yield precisely one of the two solutions 
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in R, and none of the solutions in R, . It turns out that the orthogonalized solution 
lies in R, but is not on the branch of solutions which may be found by iteration. 
The boundary of R, , as defined by the limits of the region in which the iteration 
scheme converges, agrees very well with the expressions for the boundary given in 
Section II and provides a numerical test of the theory. 

II. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

The structure of Eq. (1) is conveniently analyzed in terms of certain reduced 
equations, which were apparently first considered by Marriott [5] to obtain a 
method for avoiding iteration techniques in obtaining solutions. The reduced 
equations occur naturally when Eq. (1) is rewritten in terms of a linear operator 
L which contains integrals only from 0 to r and numbers hi which are integrals 
from 0 to co. Specifically, Eq. (1) takes the form 

&Y(r) = 2 hi%-(r) + f Nh,P,(r), 
i=l 

where 

hi = j” dr’$h+(r’) y(f) 
0 

and 

with M(r, r’) given by 

- 

for i = 1, 2 ,,.., m, (7) 

W] v(r) + 1: dr’M(r, r’> ~4% (f-9 

(6) 

Attention is then restricted to those kernels M(r, r’) for which the homogeneous 
equation 

Ly(r) = 0 (9) 

has precisely one solution yoo(r) satisfying the boundary conditions of Eqs. (3) and 
(4). The n + m + 1 reduced equations 

LYio@) = v’i-(r) for i = 0, I,..., m (10) 
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and 

where 
O,,(r) = Plc(r) for k = 0, I,..., II, (11) 

q?,-(r) = P&r) = 0, (12) 

will then have n + m + 1 unique solutions, yi, , where i = 0, l,..., m, k = 0, 
1 ,-**, n and at least one of the indices i and k are zero. Eq. (9) is then the special 
case of Eq. (10) or (11) in which i = k = 0. In the above it is assumed that Eqs. 
(3) and (4) are the boundary conditions for each yilc . 

These equations occur very naturally in the context of numerical solutions of 
Eq. (l), since Ly(r) depends explicitly only on values of y(r’) for r’ < r. If the 
equations are solved by integrating outward from r = 0, then at each step the 
equations are determinate, depending only on previously computed values of 
y(r) and y’(r). The problem of solving Eq. (6) then reduces, when h is assumed to be 
known, to the algebraic problem of solving for the unknown numbers hi and N in 
terms of the yik . With these numbers known, Eq. (6) is then a determinate equation. 
It turns out that the algebraic process of solving for hi and N is also the key step 
in examining the existence and uniqueness of the solutions. 

If the functions y&r) are assumed to be known, then the unique solution of 
Eq. (6) which satisfies Eq. (3) may be specified in terms of the (as yet unknown) 
hi and N as 

W> = vdr> + f Myso - vdr>l + i hWv,&) - ydr)l. 
i=l k=l 

(13) 

Through use of the auxiliary quantities 

where 

hiik = Jrn dr’&-(r’) yik(r’), 
0 

i = 0, l,..., m 

j = 0, I,..., m 

k = 0, l,..., n 

(14) 

and at least one of the indices j and k is zero, and use of Eq. (13) it is possible to 
obtain from the defining Eq. (7) for the hi a set of linear equations for the hi 

,z [a,, - (hijo - ho)] hi = boo + 5 (h,, - hioo) X,N for i = 1, Z,..., m. 
k=l 

(15) 



264 MJOLSNESS AND RUPPEL 

This set is assumed to be nonsingular and the discussion is restricted to coefficients 
for which this is true. Then the hi are uniquely determined when hk and N are 
specified. 

The existence and uniqueness of solutions may thus be determined by displaying 
the conditions under which one or more positive values of N will exist for a set of 
values A, . The quantities huk are all real, so the solutions hj of Eq. (15) have the 
form 

hj = h + M’ for j = 1, 2 ,..., m, (16) 

where the gj are linear forms in A, , 

for j = 1, 2 ,..., m, (17) 

and the quantities fi , Gjk and A, are all real and all specified. For each y&), 
Eq. (4) imposes a unique Ni, and Sii . Thus the boundary condition at co 

N sin@ + 6) = NO,, sin@ + &,,J + F h,[Njo sin@ -t %o) - NOO sin@ -I- &IO)] 
j-1 

+ i X,N[& sin@ + &) - NW sin@ + &)I7 (18) 
k=l 

/3=kr-15, (19) 

is obtained by requiring that the y of Eq. (13) should satisfy Eq. (4) as well as 
Eqs. (3) and (6) and may be regarded as a nonlinear defining equation for N. 
Specifically, by eliminating /I and 6 from Eq. (18), the resulting equation 

N2 = [N,, COS 6, + f hj(Nio COS 6j, - NW COS 8,) 
j=l 

+ i h,N(N,, cos S,,k - N,,, cos SW)]’ 
k-l 

+ [NW sin &IO + i hj(Nio sin aj,, - N,,,, sin 6,) 
j=l 

i- i hKN(NOk sin 6,, - N,,, sin am)]‘, 
k=l 

(20) 
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when supplemented by Eqs. (16) and (17), becomes a simple quadratic equation 
for N 

aN2+2bN+c=0 (211 

whose real coefficients are expressed in terms of the known quantities of the theory. 
The dependence of the coefficients on A is most simply expressed by means of the 

quantities 

R = g g,Njo cos(&, - 6,) + i h,N,,* COS(&,~ - 6,) 
j=l k=l 

S = t gjNj, Sin(& - 8,,) -/- 2 hkNok sin(& - ho) 
j=l k=l 

which are linear in A, , and the quantities 

U = NM (1 - f h) + 5 j;Njo COS(8j, - 60,) 
j=l j=l 

(22) 

(23) 

V = t hNjo sin&, - &,,) 
j=l 

which are independent of A, . The coefficients are then given by 

c=u2+v2>o (24) 

b = U(R - T) + VS (25) 

and 

a=&--1, (26) 

where 
c?=(R-T)~+S~>O. (27) 

Thus c is independent of A,, b is linear and homogeneous in A, and ci is homo- 
geneous and quadratic in A, . 

The discriminant of Eq. (21) 

D = b2 - ac = U2(1 - S2) + 2UVS(R - T) + V2[1 - (R - T)2] (28) 
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provides one condition for the existence of solutions, since if D < 0 the two roots 
for N are complex. Thus the condition 

or 
D 2 0, (2% 

[US - V(R - T)]2 < u2 + v2, (30) 

is a necessary condition that Eq. (1) have physically acceptable solutions. The 
region defined by Eq. (30) is the region between the two parallel hyperplanes in 
h space 

us - V(R - T) = &( u2 + vy (31) 

which are equidistant from and symmetric with respect to the origin. The origin is, 
of course, in the center of this region. The region, R, , where the equations have no 
solution consists of the two half spaces outside the two hyperplanes defined by 
Eq. (31). 

The region, R, , where Eq. (1) has a unique solution is defined by the condition 

UdO (32) 

or 

S2+(R- T)2 < 1. (33) 

Since in this region 

D = b2 + I a I c 2 0, (34) 

R, lies entirely between the two hyperplanes of Eq. (31). In this region N is given by 

N = b i (b2 + I a I c)l” 
lal * (35) 

Thus, when A is specified, the coefficients a, b and c are uniquely determined and 
there is precisely one root of Eq. (35) which leads to positive N and hence to 
physically acceptable solutions. This, then, is the region where the equation is 
uniquely soluble. The boundary of this region 

S2 + (R - T)2 = 1 (36) 

defines a hyperellipsoid E, centered at the origin of A space, since R, S, and T are 
linear and homogeneous in A, and the LHS of Eq. (36) is positive definite. In par- 
ticular, the origin of x space (corresponding to neglect of all orthogonality require- 
ments) belongs to RI and thus yields a unique solution for Eq. (1). 
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In the region outside E, but inside the hyperplanes of Eq. (31) 

a > 0, (37) 

b2 - ac > 0, (38) 

and N is given by 

N= -b f (b2 - ac)li2 
a (39) 

Thus N is real and both roots are positive (negative) when b is negative (positive). 
Thus the region R, , in which Eq. (1) has two physically acceptable solutions, is 
given by Eq. (37), Eq. (38) and 

b < 0. (40) 

More explicitly, these conditions become 

S2+(R- T)2 3 1, (41) 
Eq. (30), and 

U(R - T) + VS < 0. (42) 

Finally, the other region, R3 , where Eq. (1) has no physically acceptable solutions, 
is given by Eq. (30), Eq. (41) and 

U(R - T) + VS 3 0. (43) 

The boundary between R, and R, 

U(R - T) + VS = 0 (44) 

is, in view of the linearity and homogeneity of R, S and Tin the A, , a hyperplane 
not parallel to the hyperplanes defined by Eq. (31). This completes the classifi- 
cation of h space into four regions R, , R, , R, , R, according to the number of 
physically acceptable solutions possessed by Eq. (1) at each A value. The classifica- 
tion is algebraic in the sense that when the reduced quantities Nii and &. have been 
determined, a finite number of elementary operations suffices to construct the 
boundaries of the regions. 

It is also of interest to know how many fully orthogonalized solutions will exist 
among the infinitely many solutions filling regions R, and R, . It will be shown 
here that there is precisely one such solution which, however, may lie in either 
R, or R, . Of course, when the functions appearing in Eq. (1) are such that this 
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solution lies in R, , then there will be a second, non-orthogonalized solution at the 
same value of X. Any orthogonalized solution will satisfy the conditions 

I mdr’P,(r’)y(r’) = 0 for I = 1, 2 ,..., n. 
0 

Since the y5, are considered to be known, the auxiliary quantities 

where 

and 

I = 1, 2,..., n 

j = 0, I,..., m 

k = 0, l,..., n, 

(45) 

(46) 

and at least one of the indices j and k are zero, are uniquely determined. Thus, 
when Eq. (13) for v(r) is substituted into the defining Eq. (44) for the orthogonalized 
solution, n additional linear equations 

for 1 = 1,2,..., n (47) 

occur as constraints among the m + n quantities h, and X,N. Of course, Eq. (15) 
may also be viewed as m linear constraints among the same m + n quantities. 
Both sets of equations together suffice to determine these quantities uniquely, 
provided that the equations are nonsingular. The discussion of this section is 
therefore restricted to those cases for which this condition is met. Then the 
(uniquely determined) quantities hj and h,N will be algebraic functions of the 
numbers hijk and prlk , but will not depend explicitly on the normalization constant 
N. When these expressions are substituted into the defining Eq. (20) for N, the 
result is a defining equation of the form 

N2 = Ha, (48) 
where H2 is independent of N. This yields, of course, precisely one positive value 
for N, 

N= IHl, (49) 
and one unique set of values for the h, . It is a matter of examining the numerical 
magnitudes of all the quantities entering the theory to determine whether this 
value of X lies in RI or R2 . Both cases can occur. An example of this is discussed 
in the next section. 
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III. S-WAVE SCATTERING OF ELECTRONS ON HYDROGEN 

The s-wave scattering of electrons on hydrogen is often discussed ([6], [7]) as 
a scientific problem of importance for its own sake. Its theory and some numerical 
results are treated here as a specific application of the theory developed in Section II. 
The radial equation for the s-wave of the scattered electron may be written as 

[--$ + ka - v(r)] y(r) - 2~ [J”: dr’ q P(r’) y(r’) + I” dr’P(r) y y(f)] 
7 

+ hNP(r) = 0, (50) 

where P(r) is the radial orbital of the ground state (Is) orbital of hydrogen and Q is 
+ I(- 1) for scattering in the singlet (triplet) state. Thus in the notation of Section II 
the equation becomes 

where 

O(r) = hw(r) + hop,, 

Al = A, JJl(r) = P(r), 

(51) 

n-(r) = P(r), VI+(r) = !T@ , 
r (52) 

h(r) = 2Q F, &+(r) = 2QP(r), 

and, of course, 

h, = 1” dr’2Q ‘9 y(f). 
0 

Similarly, the reduced equations take the form 

~voo = 0, 

yielding, in particular, 

030 = P(r) and 001 = ml, (53) 

ho(r) = Yol(r). (54) 

For this case the hyperellipsoid E, the hyperplanes of Eq. (3 1) and the hyperplane 
of Eq. (44) degenerate to the points h = fh, , h = &A, and X = 0 respectively, 
where 

[1 - hl0 + bo12 
h1a = [zqo + q. - 2N,N,, c0s@,, - So,)] ’ (55) 
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The region R, is the line segment 

x2 < h,2, 

where 

and 

b = Bh, 

B = h&,2, - (l - h,) %” + t1 - hl, - h,,) Nd~, cos@,, - ‘,)I 
(1 - hl + bJd2 (59) 

is positive for the singlet and negative for triplet scattering. The region R, is given 
by the line segment 

-A, < x < -A, 

for singlet scattering and by the line segment 

A, > h > A, 

for triplet scattering. Finally, the value of A$, corresponding to the orthogonalized 
solution may be expressed analytically as 

Numerical solutions of Eq. (50) have been obtained for both triplet and singlet 
scattering by a method which closely parallels the theoretical development of 
Section II. Solutions to the reduced equations are obtained. Then all relevant 
parameters are computed and used to render Eq. (51) determinate. Eq. (51) is 
solved directly and the parameters are recomputed to check for consistency. 
When possible, the equations are also solved by iteration methods similar to those 
described in [2]. The results will be discussed below for scattering at 6 ev incident 
energy. 

In triplet scattering it turns out that evaluation of the preceding expressions 
yields 

A, = 0.03 

(56) 

(57) 

(58) 
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and 
A, = 1.17. (61) 

Thus the orthogonalized solution lies well within R, and Eq. (50) has only one 
solution when X is near to h, (i.e., near the orthogonalized solution). Iteration 
solutions are readily obtained for X near A, , and are quite similar in convergence 
to the oxygen and nitrogen calculations, where h = 0, reported in [2]. The advan- 
tage of the non-iterative method is, in this case, that less machine time is required. 

The situation is somewhat different for singlet scattering. Evaluation of the 
preceding expressions yields 

and 
A, = 0.0879, A, = 0.8948, h, = -0.5606 (62) 

b = 93.62 A. 

Clearly A, lies in R2 and for X near A,, there will be two solutions, one of which will 
be near to the desired orthogonalized wave function. However, iterative solutions 
were obtainable only in the region R, and not in R, , R, or R4 and yielded only one 
of the two existing solutions in R, . The iterative solutions were continuous with h 
and hence formed one branch of solutions, with the other branch of solutions being 
unreachable by the iteration techniques employed. When the orthogonalized 
solution was used as input to the iteration scheme, successive iterations would 
diverge from this solution and then converge on the second (non-orthogonalized) 
solution. 

The iteration scheme converged very slowly for h in R, but near A, or A, , 
requiring hundreds of iterations in a few cases. Thus, a numerical test of the 
theoretical values for h, and A, is obtained by recording the largest and smallest 
(negative) values of h for which convergence of the iteration procedure was possible. 
This yields 

A, = 0.088 and A, = 0.8944, (63) 

and clearly agrees with Eq. (62). Further tests were provided by the agreement 
between numerical computation of and the analytic expressions for Nii , hi and 
pz . These were tested in both the singlet and triplet scattering and yielded at least 
five figure agreement in all cases. 

IV. CONCLUSIONS 

The phenomena discussed here-non-existence of solutions and double solu- 
tions-as well as unique solvability of equations are of general occurrence in 
linearized Hartree-Fock calculations and each possibility will occur under well 
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defined circumstances. The same situation would hold true for the full non-linear 
Hartree-Fock theory if iterative numerical methods were employed in which the 
nonlinearity were treated as already determined, and the phenomena could be of 
more general occurrence. These phenomena could explain some of the somewhat 
puzzling instabilities that have been observed in calculational procedures and could 
lead to incorrect wave functions being obtained if, for example, solutions were 
calculated numerically in R, on a branch not containing the orthogonalized solution 
and the Gram-Schmidt process were used to produce an orthogonalized solution. 

In particular, the utility of the Marriott [5] calculational procedure, in which the 
orthogonalized solution is calculated essentially algebraically from certain stable 
reduced equations, is seen very clearly. In this fashion it is possible to avoid certain 
instabilities of iterative calculations. 

The discussion has, through use of Eq. (4), implicitly excluded potentials which 
are Coulomb-like at large 1. However, changing this asymptotic boundary condition 
to allow for a logarithmic contribution to the phase should not affect the form of 
the results of Section II. Thus, this restriction is not essential. 
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